
1

A study of metric for mid-frequency performance assessment of vehicle panel stacks

N. Schaefer¹, B. Dergen², W. Desmet³

¹ Toyota Motor Europe, 1930 Zaventem, Belgium, Email: nicolas.schaefer@toyota-europe.com
² Toyota Motor Europe, 1930 Zaventem, Belgium, Email: bart.bergen@toyota-europe.com
³ Katholieke Universiteit Leuven, 3001 Hevelee, Belgium, Email: wim.desmet@mech.kuleuven.be

A study of metric for mid-frequency performance assessment of vehicle panel stacks Nicolas Schaefer, Bart Bergen, Wim Desmet Toyota Motor Europe – Noise and Vibration KU Leuven – Department of Mechanical Engineering

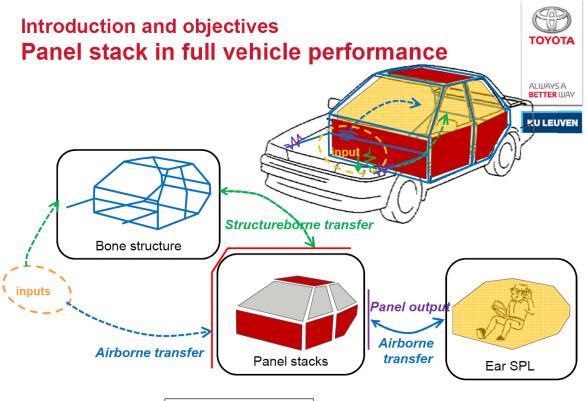
Mid-frequency (100-1000 Hz) simulation of **full vehicle** is very challenging → Breakdown → Performance simulation needs to be broken down to **individual panel stack level**

→ A metric is needed to define the performance for one panel stack.

2 25-nov.-2015

A study of metric for mid-frequency performance assessment of vehicle panel stacks Contents

1. Introduction and objectives


- Common transmission metric for panel
- Limitations with current metric
- Novel transmission metric objectives

2. Metric definition

- Metric input quantity
- Metric output quantity
- Breakdown of the metric

3. Conclusions and next steps

Panel output

Panel input

Fully Coupled system

→ Some assumptions need to be made

Introduction and objectives Common metrics for stack performance

TOYOTA ALWAYS A BETTER WAY

Transmission Loss (TL)

Definition: $TL = 10 \log_{10} \frac{Incident power}{Transmitted power}$

KU LEUVEN

(semi-)anechoic

room > 50 m³ (free-field)

55 dB

Standard measurements [1], [2]

- Coupled rooms
 - Reverberant room , diffuse field
 - Semi-anechoic room, free-field
- Smaller Cabins

References

[1] ASTM E90-02

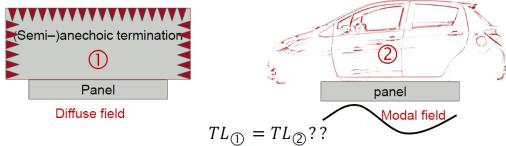
[2] ISO 140-1:1997

100 dB

6 25-nov.-2015

Introduction and objectives Limitations with transmission loss

Transmission loss (TL)


- Mainly airborne noise contributions
- High-frequency assumptions

Moving to mid-frequencies (100-1000 Hz)

- > Structureborne needs to be taken into account
- Modal behaviours appear:
 - On input side, more complex fields than diffuse
 - On output side, power is dependent on the receiving impedance

→ Change from ideal to vehicle condition doesn't

lead to expected performance

Introduction and objectives Limitations with Transmission Loss

Mid-frequency breakdown of the metric

Development situation: e.g. "TL is too low"

In high frequency range, breakdown of performance is possible

- > 1D models: Transfer Matrix Method, mass-spring...
- → Can tell the contribution for which layer / coupling between layers

In mid-frequency range, root cause can be more difficult to identify:

- Additionally, due to modal behavior, "good match" of modes is possible, e.g.
 - Panel with interior cavity acoustic mode
 - Engine compartment with panel (airborne input)
 - Bone structure with panel (structureborne)

→ TL does not support a contribution breakdown

of performance in Mid-frequencies

8 25-nov.-2015

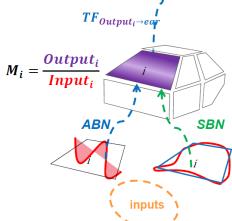
Introduction and objectives Goals for a novel mid-frequency metric for stack performance

KU LEUVEN

Requirements for a new MF metric M_i

Compatible with panel contribution analysis philosophy

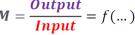
$$- \underbrace{p_{ear}}_{\text{target}} = \underbrace{\sum_{i=panel} p_i}_{\text{breakdown}} \text{ with } p_i = \underbrace{Input_i}_{\text{known}} \underbrace{M_i}_{\text{target at panel level}} TF_{Output_i \to ear}$$

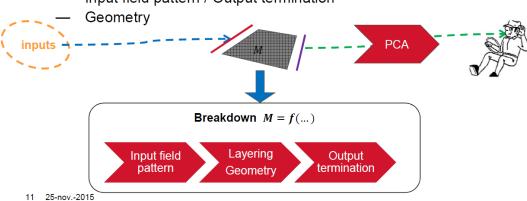

- Structureborne and airborne inputs
- Modal input field patterns

Step 2: Define an Output quantity which handles:

- "Full Vehicle" measurements
- "Panel alone" measurements / simulation

Step 3: Breakdown of the performance $M_i = f_i(...)$ in mechanism parameters, function of:

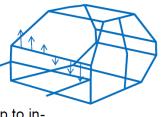

- Layering
- Input field pattern / Output termination
- 9 : Geometry


Metric definition Contents

- 2. Definition of Output quantity
- Breakdown of the metric M = f(...) of
 - Layering
 - Input field pattern / Output termination

ALWAYS A BETTER WAY

KU LEUVEN

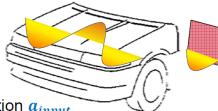

Metric definition Metric input quantity

TOYOTA ALWAYS A BETTER WAY

Defining Input quantity

Available:

- Acoustic pressure / structural stresses
- ➤ Acoustic velocity / structural acceleration
- Energy / power



Good input quantity:

- Predictable change from a dedicated set-up to invehicle condition (e.g. back-coupling the bone structure in case of SBN input)
- Model-able in Finite Element simulation
- Easily instrument-able

→ Choice of input quantities:

- ➤ Structure-borne: bone acceleration a_{input}
- Air-borne: pressure pinput

12 25-nov.-2015

Metric definition Metric output quantity

TOYOTA ALWAYS A BETTER WAY

Defining Output quantity

Available:

- Acoustic pressure / structural stresses
- Acoustic velocity / structural displacement
- Energy / power

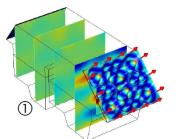
Back-coupling from the interior to the structure is expected to be small in midfrequencies

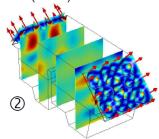
Velocity is compatible with Panel Contribution Analysis philosophy

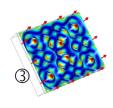
$$p_{ear} = \sum_{i} \frac{p}{Q_i} Q_i$$

With Q_i the volume velocity and $\frac{p}{Q_i}$ the transfer function.

→ Expectation: panel behaves as a velocity source

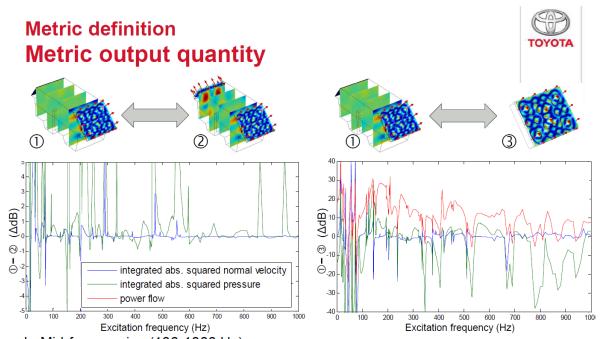

Metric definition Metric output quantity


Confirmation with FE models


- > Direct frequency response, frequency range up to 1000 Hz
- Structure-borne input on panel edges
- Receiving impedance on other trim parts

3 Models

- ① Full-vehicle, input on the windshield
- 2 Full-vehicle, input on the windshield & the rear window
- ③ Windshield alone in anechoic field (PML)



→ Confirmation with integrated quantities over the windshield surface

14 25-nov.-2015

In Mid-frequencies (100-1000 Hz)

- > Perturbation from another source: limited impact on integrated squared velocity.
- ➤ Change from another environment: more impact, but velocity related integration is still the least sensitive.
- → As expected, **velocity-related value** is a good choice as an output quantity.

Metric definition Breakdown of the metric

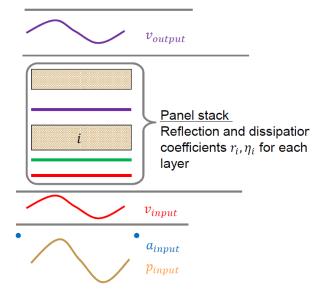
TOYOTA ALWAYS A BETTER WAY

Objectives

In-situ panel response
$$ISPR = \frac{v_{output}}{p_{input}||a_{input}|} = \frac{v_{output}}{v_{input}} \frac{v_{input}}{p_{input}||a_{input}|}$$

KU LEUVEN

Breakdown of the velocity ratio


$$VR = \frac{v_{output}}{v_{input}} = f(\eta_i, r_i)$$

in:

- \triangleright Reflection r_i
- \triangleright Dissipation η_i

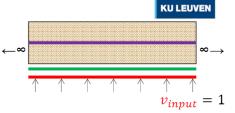
From:

- Layering
- Input field pattern
- Output termination
- Geometry

16 25-nov.-2015

Metric definition Breakdown of the metric

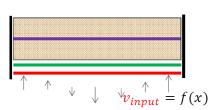
Method
$$VR = \frac{v_{output}}{v_{input}} = f(\eta_i, r_i)$$


1. Breakdown from the layering

Determination in 1D infinite case in:

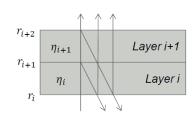
- Dissipation coefficient from each layer
- Reflection coefficient between each pair

2. Breakdown from **input field pattern**


Evolution of the dissipation and reflection coefficients

Evolution of the dissipation and reflection coefficients

ALWAYS A BETTER WAY


KU LEUVEN

Metric definition Breakdown of the metric

Layering - 1D multi-layered panel case

- \triangleright Is attenuated of a complex factor η_i
- \triangleright Is reflected to the next interface with a factor r_{i+1}

A general formulation : $VR = \frac{v_{output}}{v_{input}} = \frac{\prod \eta_i (1 - r_{i+1})}{\alpha_n}$

With:

$$- \alpha_n = \alpha_{n-1} - r_{n+1}\beta_n \text{ with } \alpha_0 = 1$$

$$- \beta_n = \eta_n^2 (\beta_{n-1} + r_n (\sum_{i=1}^{n-2} r_{i+1}\beta_i - 1)) \text{ with } \beta_1 = \eta_1^2$$

- > exact for solutions to 1D Helmholtz equation (fluid / elastic compressional)
- Similar to TMM
- → This formulation gives a useful tool to understand which layer / pair of layers contributes to the velocity ratio VR

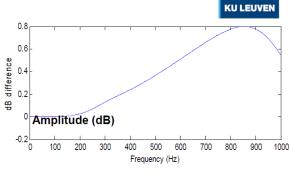
18 25-nov.-2015

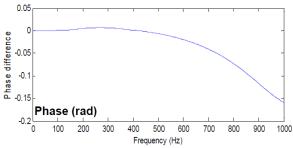
Metric definition Breakdown of the metric


Layering - Discrepancy for Biot case

$$VR = \frac{v_{output}}{v_{input}} = \frac{\prod \eta_i (1 - r_{i+1})}{\alpha_n}$$

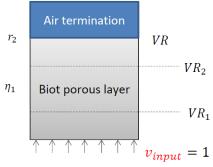
- Exact for 1D-fluid and elastic layers
- \succ Discrepancy in case of Biot formulation


Invert problem solving $\{VR_1, VR_2\} \Rightarrow \{\eta_1, r_2\}$


$$VR_{fitted} = f(\eta_1, r_2) \% VR_{FE}$$

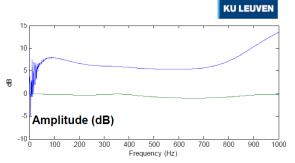
→ Controllable discrepancy

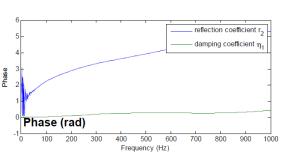
Metric definition Breakdown of the metric

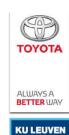

Layering - Discrepancy for Biot case

$$VR = \frac{v_{output}}{v_{input}} = \frac{\prod \eta_i (1 - r_{i+1})}{\alpha_n}$$

- > Exact for 1D-fluid and elastic layers
- > Discrepancy in case of Biot formulation

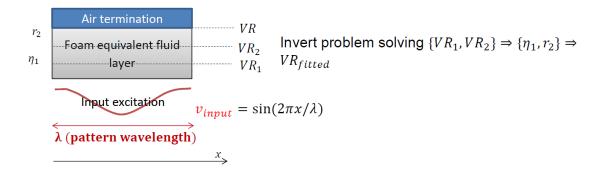

Invert problem solving $\{VR_1, VR_2\} \Rightarrow \{\eta_1, r_2\}$

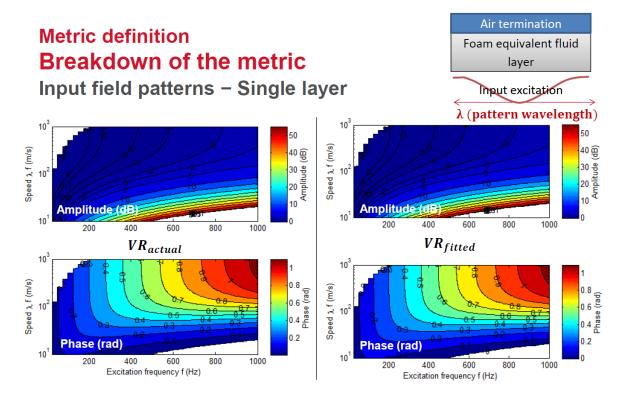

$$VR_{fitted} = f(\eta_1, r_2) \% VR_{FE}$$


→ Controllable discrepancy

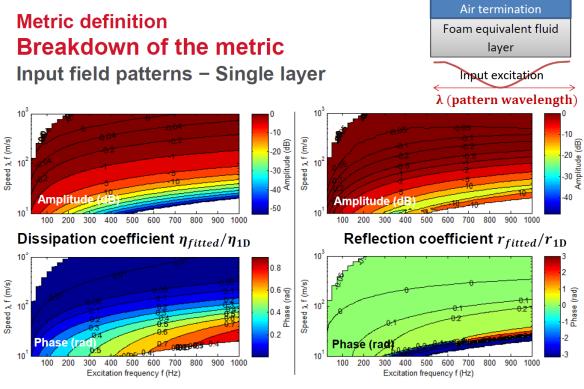
20 25-nov.-2015

Metric definition Breakdown of the metric


Input field patterns - sine excitation


$$VR = \frac{v_{output}}{v_{input}} = \frac{\prod \eta_i (1 - r_{i+1})}{\alpha_n}$$

ا مام م


Evolution of the coefficients for more complex input fields? FE model:

- Infinite layering
- Real sine excitation for different patterns λ
- Excitation frequencies f up to 1 kHz

→ 1D model can fit more complex input patterns with good accuracy
22 25-nov.-2015

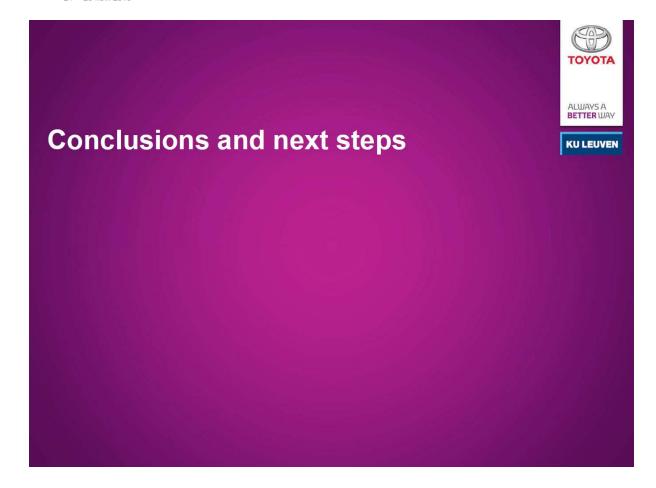
→ can check the evolution of dissipation and reflection coefficients

→ allow understanding the evolution of performance of VR
23 25-nov.-2015

Metric definition Breakdown of the metric

TOYOTA ALWAYS A BETTER WAY

KU LEUVEN

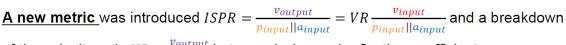

Breakdown - Conclusions

A breakdown of the velocity ratio $VR = \frac{v_{output}}{v_{input}}$ in transmission and reflection coefficients has been introduced:

- It is exact in 1D elastic and fluid layers
- > For 1D Biot porous layer, controllable discrepancies arise
- For more complex input shapes:
 - those 1D coefficients can be fitted
 - It gives good accuracy for reconstruction of the velocity ratio VR

→ Gives a good tool for development:

- Assessment of the contribution of each layer and each interaction between 2 layers in the VR
- Assessment of the evolution of the coefficients for more complex input patterns

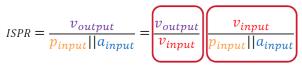

ALWAYS A BETTER WAY

KU LEUVEN

Conclusions and next steps Conclusions

Mid-frequency transmission loss is too dependent:

- > On output termination,
- On input fields
- > On perturbation from the other panels
- → It cannot be used as a performance metric for the panel itself in MF.



of the velocity ratio $VR = \frac{v_{output}}{v_{input}}$ in transmission and reflection coefficients from

- Layering
 - Assessment of the contribution of each layer / each interaction
- Input field patterns
 - Evolution for more complex input patterns with low discrepancy
- Output termination
 - Velocity v_{output} is less dependent to the perturbations mentioned above

26 25-nov.-2015

Conclusions and next steps **Next steps**

- Confirm the choice of $\frac{p_{input}}{|a_{input}|} = a_{input}$ as input quantities by checking the sensitivity of $\frac{v_{input}}{|p_{input}|} = a_{input}$ to perturbation of environment.
- ightharpoonup Breakdown of the velocity ratio $VR = \frac{v_{output}}{v_{input}}$ due to geometry effects
 - Assessment of the evolution of reflection and dissipation coefficients near the limits

Then ISPR could be used as:

- Panel target setting
- > Sensitivity analyses

Acknowledgements

KU LEUVEN

IWT

The research of N. Schaefer is funded by a grant from the institute for promotion of science in Flanders (IWT).

VSC

The computational resources and services used in this work were notably provided by the VSC (Flemish Supercomputer Centre), funded by the Hercules Foundation and the Flemish Government – department EWI.